Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Nature ; 625(7995): 557-565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172636

RESUMO

Osteoarthritis (OA) is the most common joint disease. Currently there are no effective methods that simultaneously prevent joint degeneration and reduce pain1. Although limited evidence suggests the existence of voltage-gated sodium channels (VGSCs) in chondrocytes2, their expression and function in chondrocytes and in OA remain essentially unknown. Here we identify Nav1.7 as an OA-associated VGSC and demonstrate that human OA chondrocytes express functional Nav1.7 channels, with a density of 0.1 to 0.15 channels per µm2 and 350 to 525 channels per cell. Serial genetic ablation of Nav1.7 in multiple mouse models demonstrates that Nav1.7 expressed in dorsal root ganglia neurons is involved in pain, whereas Nav1.7 in chondrocytes regulates OA progression. Pharmacological blockade of Nav1.7 with selective or clinically used pan-Nav channel blockers significantly ameliorates the progression of structural joint damage, and reduces OA pain behaviour. Mechanistically, Nav1.7 blockers regulate intracellular Ca2+ signalling and the chondrocyte secretome, which in turn affects chondrocyte biology and OA progression. Identification of Nav1.7 as a novel chondrocyte-expressed, OA-associated channel uncovers a dual target for the development of disease-modifying and non-opioid pain relief treatment for OA.


Assuntos
Condrócitos , Canal de Sódio Disparado por Voltagem NAV1.7 , Osteoartrite , Bloqueadores do Canal de Sódio Disparado por Voltagem , Animais , Humanos , Camundongos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Progressão da Doença , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/deficiência , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neurônios/metabolismo , Osteoartrite/complicações , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Dor/complicações , Dor/tratamento farmacológico , Dor/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
2.
J Gen Physiol ; 156(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38127314

RESUMO

Human voltage-gated sodium (hNaV) channels are responsible for initiating and propagating action potentials in excitable cells, and mutations have been associated with numerous cardiac and neurological disorders. hNaV1.7 channels are expressed in peripheral neurons and are promising targets for pain therapy. The tarantula venom peptide protoxin-II (PTx2) has high selectivity for hNaV1.7 and is a valuable scaffold for designing novel therapeutics to treat pain. Here, we used computational modeling to study the molecular mechanisms of the state-dependent binding of PTx2 to hNaV1.7 voltage-sensing domains (VSDs). Using Rosetta structural modeling methods, we constructed atomistic models of the hNaV1.7 VSD II and IV in the activated and deactivated states with docked PTx2. We then performed microsecond-long all-atom molecular dynamics (MD) simulations of the systems in hydrated lipid bilayers. Our simulations revealed that PTx2 binds most favorably to the deactivated VSD II and activated VSD IV. These state-specific interactions are mediated primarily by PTx2's residues R22, K26, K27, K28, and W30 with VSD and the surrounding membrane lipids. Our work revealed important protein-protein and protein-lipid contacts that contribute to high-affinity state-dependent toxin interaction with the channel. The workflow presented will prove useful for designing novel peptides with improved selectivity and potency for more effective and safe treatment of pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Peptídeos , Venenos de Aranha , Humanos , Potenciais de Ação , Interneurônios , Simulação de Dinâmica Molecular , Dor , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Venenos de Aranha/metabolismo , Peptídeos/metabolismo
3.
J Gen Physiol ; 155(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37903281

RESUMO

Voltage-gated sodium channels in peripheral nerves conduct nociceptive signals from nerve endings to the spinal cord. Mutations in voltage-gated sodium channel NaV1.7 are responsible for a number of severe inherited pain syndromes, including inherited erythromelalgia (IEM). Here, we describe the negative shifts in the voltage dependence of activation in the bacterial sodium channel NaVAb as a result of the incorporation of four different IEM mutations in the voltage sensor, which recapitulate the gain-of-function effects observed with these mutations in human NaV1.7. Crystal structures of NaVAb with these IEM mutations revealed that a mutation in the S1 segment of the voltage sensor facilitated the outward movement of S4 gating charges by widening the pathway for gating charge translocation. In contrast, mutations in the S4 segments modified hydrophobic interactions with surrounding amino acid side chains or membrane phospholipids that would enhance the outward movement of the gating charges. These results provide key structural insights into the mechanisms by which these IEM mutations in the voltage sensors can facilitate outward movements of the gating charges in the S4 segment and cause hyperexcitability and severe pain in IEM. Our work gives new insights into IEM pathogenesis at the near-atomic level and provides a molecular model for mutation-specific therapy of this debilitating disease.


Assuntos
Eritromelalgia , Canal de Sódio Disparado por Voltagem NAV1.7 , Humanos , Eritromelalgia/genética , Eritromelalgia/metabolismo , Eritromelalgia/patologia , Modelos Moleculares , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/genética , Dor/metabolismo , Dor/patologia
4.
Mol Biol Rep ; 50(11): 9315-9322, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812355

RESUMO

BACKGROUND: Oxidative stress has a critical effect on both persistent pain states and periodontal disease. Voltage-gated sodium NaV1.7 (SCN9A), and transient receptor potential ankyrin 1 (TRPA1) are pain genes. The goal of this study was to investigate oxidative stress markers, periodontal status, SCN9A, and TRPA1 channel expression in periodontal tissues of rats with paclitaxel-induced neuropathic pain-like behavior (NPLB). METHODS AND RESULTS: Totally 16 male Sprague Dawley rats were used: control (n = 8) and paclitaxel-induced pain (PTX) (n = 8). The alveolar bone loss and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels were analyzed histometrically and immunohistochemically. Gingival superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities (spectrophotometric assay) were measured. The relative TRPA1 and SCN9A genes expression levels were evaluated using quantitative real-time PCR (qPCR) in the tissues of gingiva and brain. The PTX group had significantly higher alveolar bone loss and 8-OHdG compared to the control. The PTX group had significantly lower gingival SOD, GPx and CAT activity than the control groups. The PTX group had significantly higher relative gene expression of SCN9A (p = 0.0002) and TRPA1 (p = 0.0002) than the control in gingival tissues. Increased nociceptive susceptibility may affect the increase in oxidative stress and periodontal destruction. CONCLUSIONS: Chronic pain conditions may increase TRPA1 and SCN9A gene expression in the periodontium. The data of the current study may help develop novel approaches both to maintain periodontal health and alleviate pain in patients suffering from orofacial pain.


Assuntos
Perda do Osso Alveolar , Neuralgia , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Estresse Oxidativo , Antioxidantes/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Paclitaxel/farmacologia , Neuralgia/genética , Neuralgia/metabolismo , Ligamento Periodontal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446137

RESUMO

The cardiac cell mechanical environment changes on a beat-by-beat basis as well as in the course of various cardiac diseases. Cells sense and respond to mechanical cues via specialized mechano-sensors initiating adaptive signaling cascades. With the aim of revealing new candidates underlying mechano-transduction relevant to cardiac diseases, we investigated mechano-sensitive ion channels (MSC) in human hearts for their chamber- and disease-preferential mRNA expression. Based on a meta-analysis of RNA sequencing studies, we compared the mRNA expression levels of MSC in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and from patients in sinus rhythm (underlying diseases: heart failure, coronary artery disease, heart valve disease) or with atrial fibrillation. Our results suggest that a number of MSC genes are expressed chamber preferentially, e.g., CHRNE in the atria (compared to the ventricles), TRPV4 in the right atrium (compared to the left atrium), CACNA1B and KCNMB1 in the left atrium (compared to the right atrium), as well as KCNK2 and KCNJ2 in ventricles (compared to the atria). Furthermore, 15 MSC genes are differentially expressed in cardiac disease, out of which SCN9A (lower expressed in heart failure compared to donor tissue) and KCNQ5 (lower expressed in atrial fibrillation compared to sinus rhythm) show a more than twofold difference, indicative of possible functional relevance. Thus, we provide an overview of cardiac MSC mRNA expression in the four cardiac chambers from patients with different cardiac diseases. We suggest that the observed differences in MSC mRNA expression may identify candidates involved in altered mechano-transduction in the respective diseases.


Assuntos
Fibrilação Atrial , Cardiopatias , Insuficiência Cardíaca , Transplante de Coração , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Doadores de Tecidos , Átrios do Coração/metabolismo , Ventrículos do Coração , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Cardiopatias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(32): e2217800120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498871

RESUMO

Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.


Assuntos
Dor Crônica , Neuralgia , Animais , Hiperalgesia/induzido quimicamente , Dor Crônica/genética , Dor Crônica/terapia , Macaca mulatta/metabolismo , Neuralgia/genética , Neuralgia/terapia , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8
7.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117223

RESUMO

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Assuntos
Toxinas Biológicas , Urtica dioica , Austrália , Dor , Peptídeos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(14): e2219624120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996107

RESUMO

Gain-of-function mutations in voltage-gated sodium channel NaV1.7 cause severe inherited pain syndromes, including inherited erythromelalgia (IEM). The structural basis of these disease mutations, however, remains elusive. Here, we focused on three mutations that all substitute threonine residues in the alpha-helical S4-S5 intracellular linker that connects the voltage sensor to the pore: NaV1.7/I234T, NaV1.7/I848T, and NaV1.7/S241T in order of their positions in the amino acid sequence within the S4-S5 linkers. Introduction of these IEM mutations into the ancestral bacterial sodium channel NaVAb recapitulated the pathogenic gain-of-function of these mutants by inducing a negative shift in the voltage dependence of activation and slowing the kinetics of inactivation. Remarkably, our structural analysis reveals a common mechanism of action among the three mutations, in which the mutant threonine residues create new hydrogen bonds between the S4-S5 linker and the pore-lining S5 or S6 segment in the pore module. Because the S4-S5 linkers couple voltage sensor movements to pore opening, these newly formed hydrogen bonds would stabilize the activated state substantially and thereby promote the 8 to 18 mV negative shift in the voltage dependence of activation that is characteristic of the NaV1.7 IEM mutants. Our results provide key structural insights into how IEM mutations in the S4-S5 linkers may cause hyperexcitability of NaV1.7 and lead to severe pain in this debilitating disease.


Assuntos
Eritromelalgia , Canais de Sódio Disparados por Voltagem , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/genética , Dor/metabolismo , Mutação , Eritromelalgia/genética , Eritromelalgia/metabolismo , Eritromelalgia/patologia , Canais de Sódio Disparados por Voltagem/genética , Treonina/genética
9.
Brain ; 146(7): 3049-3062, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730021

RESUMO

Personalized management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene targets driving peripheral sensory transduction, transmission, modulation and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalized medicine in patients with neuropathic pain.


Assuntos
MicroRNAs , Neuralgia , Humanos , RNA Mensageiro , Neuralgia/genética , Neuralgia/metabolismo , Epiderme/metabolismo , MicroRNAs/genética , Células Epidérmicas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
10.
J Dermatol ; 50(7): 938-941, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36815391

RESUMO

Primary erythromelalgia (PEM) is a rare condition characterized by severe burning pain, erythema, and increased temperature in the extremeties. Mutations in the Nav1.7 sodium channel encoded by the SCN9A are responsible for PEM. The pathophysiology of PEM is unclear, but the involvement of neurogenic and vasogenic mechanisms has been suggested. Here we report a case of severe PEM in a 9-year-old child with a novel SCN9A mutation and examine the distribution of nerve fibers and expression of neuropeptides in the affected skin. Gene mutation analysis revealed a novel mutation p.L951I (c.2851C>A) in the heterozygous form of the SCN9A. An immunofluorescence study showed that intraepidermal nerve fibers were decreased in the affected leg, suggesting small fiber neuropathy. There was no increase in the expression of substance P (SP) or calcitonin gene-related peptide (CGRP) in the lesional skin tissue. These findings suggest SP and CGRP do not play a major role in the pathophysiology of primary erythromelalgia.


Assuntos
Eritromelalgia , Neuropatia de Pequenas Fibras , Criança , Humanos , Eritromelalgia/diagnóstico , Eritromelalgia/genética , Eritromelalgia/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neuropatia de Pequenas Fibras/diagnóstico , Neuropatia de Pequenas Fibras/genética , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dor , Mutação
11.
J Biol Chem ; 299(1): 102816, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539035

RESUMO

Neuronal function relies on the maintenance of appropriate levels of various ion channels at the cell membrane, which is accomplished by balancing secretory, degradative, and recycling pathways. Neuronal function further depends on membrane specialization through polarized distribution of specific proteins to distinct neuronal compartments such as axons. Voltage-gated sodium channel NaV1.7, a threshold channel for firing action potentials in nociceptors, plays a major role in human pain, and its abundance in the plasma membrane is tightly regulated. We have recently characterized the anterograde axonal trafficking of NaV1.7 channels in Rab6A-positive vesicles, but the fate of internalized channels is not known. Membrane proteins that have undergone endocytosis can be directed into multiple pathways including those for degradation, recycling to the membrane, and transcytosis. Here, we demonstrate NaV1.7 endocytosis and dynein-dependent retrograde trafficking in Rab7-containing late endosomes together with other axonal membrane proteins using real-time imaging of live neurons. We show that some internalized NaV1.7 channels are delivered to lysosomes within the cell body, and that there is no evidence for NaV1.7 transcytosis. In addition, we show that NaV1.7 is recycled specifically to the axonal membrane as opposed to the soma membrane, suggesting a novel mechanism for the development of neuronal polarity. Together, these results shed light on the mechanisms by which neurons maintain excitable membranes and may inform efforts to target ion channel trafficking for the treatment of disorders of excitability.


Assuntos
Axônios , Canal de Sódio Disparado por Voltagem NAV1.7 , Células Receptoras Sensoriais , Humanos , Potenciais de Ação/fisiologia , Axônios/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Células Receptoras Sensoriais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
12.
Mol Pain ; 19: 17448069221150138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36550597

RESUMO

Polysorbate 80 is a non-ionic detergent derived from polyethoxylated sorbitan and oleic acid. It is widely used in pharmaceuticals, foods, and cosmetics as an emulsifier. Nav1.7 is a peripheral sodium channel that is highly expressed in sympathetic and sensory neurons, and it plays a critical role in determining the threshold of action potentials (APs). We found that 10 µg/mL polysorbate 80 either abolished APs or increased the threshold of the APs of dorsal root ganglions. We thus investigated whether polysorbate 80 inhibits Nav1.7 sodium current using a whole-cell patch-clamp recording technique. Polysorbate 80 decreased the Nav1.7 current in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 250.4 µg/mL at a holding potential of -120 mV. However, the IC50 was 1.1 µg/mL at a holding potential of -90 mV and was estimated to be 0.9 µg/mL at the resting potentials of neurons, where most channels are inactivated. The activation rate and the voltage dependency of activation of Nav1.7 were not changed by polysorbate 80. However, polysorbate 80 caused hyperpolarizing shifts in the voltage dependency of the steady-state fast inactivation curve. The blocking of Nav1.7 currents by polysorbate 80 was not reversible at a holding potential of -90 mV but was completely reversible at -120 mV, where the channels were mostly in the closed state. Polysorbate 80 also slowed recovery from inactivation and induced robust use-dependent inhibition, indicating that it is likely to bind to and stabilize the inactivated state. Our results indicate that polysorbate 80 inhibits Nav1.7 current in concentration-, state-, and use-dependent manners when used even below commercial concentrations. This suggests that polysorbate 80 may be helpful in pain medicine as an excipient. In addition, in vitro experiments using polysorbate 80 with neurons should be conducted with caution.


Assuntos
Neurônios , Polissorbatos , Polissorbatos/farmacologia , Polissorbatos/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Potenciais da Membrana/fisiologia , Potenciais de Ação , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
13.
J Pain ; 24(5): 840-859, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36586660

RESUMO

Venom-derived NaV1.7 channel blockers have promising prospects in pain management. The 34-residue tarantula peptide GpTx-1 is a potent NaV1.7 channel blocker. Its powerful analog [Ala5, Phe6, Leu26, Arg28]GpTx-1 (GpTx-1-71) displayed excellent NaV1.7 selectivity and analgesic properties in mice. The current study aimed to elucidate the anti-hyperalgesic activities of GpTx-1-71 in inflammatory pain and reveal the underlying mechanisms. Our results demonstrated that intrathecal and intraplantar injections of GpTx-1-71 dose-dependently attenuated CFA-induced inflammatory hypersensitivity in rats. Moreover, GpTx-1-71-induced anti-hyperalgesia was significantly reduced by opioid receptor antagonists and the enkephalin antibody and diminished in proenkephalin (Penk) gene knockout animals. Consistently, GpTx-1-71 treatment increased the enkephalin level in the spinal dorsal horn and promoted the Penk transcription and enkephalin release in primary dorsal root ganglion (DRG) neurons, wherein sodium played a crucial role in these processes. Mass spectrometry analysis revealed that GpTx-1-71 mainly promoted the secretion of Met-enkephalin but not Leu-enkephalin from DRG neurons. In addition, the combination of subtherapeutic Met-enkephalin and GpTx-1-71 produced synergistic anti-hyperalgesia in CFA-induced inflammatory hypersensitivity. These findings suggest that the endogenous enkephalin pathway is essential for GpTx-1-71-induced spinal and peripheral analgesia in inflammatory pain. PERSPECTIVE: This article presents a possible pharmacological mechanism underlying NaV1.7 blocker-induced analgesia in inflammatory pain, which helps us to better understand and develop venom-based painkillers for incurable pain.


Assuntos
Hiperalgesia , Dor , Ratos , Camundongos , Animais , Dor/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Encefalinas/metabolismo , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacologia , Encefalina Metionina/uso terapêutico , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
14.
Cell Rep Methods ; 2(11): 100341, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36452863

RESUMO

Despite development of protocols to differentiate human pluripotent stem cells (hPSCs), those used to produce sensory neurons remain difficult to replicate and result in heterogenous populations. There is a growing clinical burden of chronic pain conditions, highlighting the need for relevant human cellular models. This study presents a hybrid differentiation method to produce nociceptive sensory neurons from hPSCs. Lines harboring an inducible NEUROG2 construct were patterned toward precursors with small molecules followed by NEUROG2 overexpression. Neurons expressed key markers, including BRN3A and ISL1, with single-cell RNA sequencing, revealing populations of nociceptors expressing SCN9A and TRP channels. Physiological profiling with multi-electrode arrays revealed that neurons responded to noxious stimuli, including capsaicin. Finally, we modeled pain-like states to identify genes and pathways involved in pain transduction. This study presents an optimized method to efficiently produce nociceptive sensory neurons and provides a tool to aid development of chronic pain research.


Assuntos
Dor Crônica , Células-Tronco Pluripotentes Induzidas , Humanos , Nociceptores , Dor Crônica/genética , Nociceptividade , Células Receptoras Sensoriais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
15.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499167

RESUMO

Neuropathic pain is a refractory chronic disease affecting millions of people worldwide. Given that present painkillers have poor efficacy or severe side effects, developing novel analgesics is badly needed. The multiplex structure of active ingredients isolated from natural products provides a new source for phytochemical compound synthesis. Here, we identified a natural product, Narirutin, a flavonoid compound isolated from the Citrus unshiu, showing antinociceptive effects in rodent models of neuropathic pain. Using calcium imaging, whole-cell electrophysiology, western blotting, and immunofluorescence, we uncovered a molecular target for Narirutin's antinociceptive actions. We found that Narirutin (i) inhibits Veratridine-triggered nociceptor activities in L4-L6 rat dorsal root ganglion (DRG) neurons, (ii) blocks voltage-gated sodium (NaV) channels subtype 1.7 in both small-diameter DRG nociceptive neurons and human embryonic kidney (HEK) 293 cell line, (iii) does not affect tetrodotoxin-resistant (TTX-R) NaV channels, and (iv) blunts the upregulation of Nav1.7 in calcitonin gene-related peptide (CGRP)-labeled DRG sensory neurons after spared nerve injury (SNI) surgery. Identifying Nav1.7 as a molecular target of Narirutin may further clarify the analgesic mechanism of natural flavonoid compounds and provide an optimal idea to produce novel selective and efficient analgesic drugs.


Assuntos
Produtos Biológicos , Neuralgia , Canais de Sódio Disparados por Voltagem , Ratos , Humanos , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/metabolismo , Células HEK293 , Ratos Sprague-Dawley , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Gânglios Espinais/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Tetrodotoxina/farmacologia , Células Receptoras Sensoriais/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
16.
PLoS One ; 17(11): e0277134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36331951

RESUMO

Human dental pulp stem cells (hDPSCs) have increasingly gained interest as a potential therapy for nerve regeneration in medicine and dentistry, however their neurogenic potential remains a matter of debate. This study aimed to characterize hDPSC neuronal differentiation in comparison with the human SH-SY5Y neuronal stem cell differentiation model. Both hDPSCs and SH-SY5Y could be differentiated to generate typical neuronal-like cells following sequential treatment with all-trans retinoic acid (ATRA) and brain-derived neurotrophic factor (BDNF), as evidenced by significant expression of neuronal proteins ßIII-tubulin (TUBB3) and neurofilament medium (NF-M). Both cell types also expressed multiple neural gene markers including growth-associated protein 43 (GAP43), enolase 2/neuron-specific enolase (ENO2/NSE), synapsin I (SYN1), nestin (NES), and peripherin (PRPH), and exhibited measurable voltage-activated Na+ and K+ currents. In hDPSCs, upregulation of acetylcholinesterase (ACHE), choline O-acetyltransferase (CHAT), sodium channel alpha subunit 9 (SCN9A), POU class 4 homeobox 1 (POU4F1/BRN3A) along with a downregulation of motor neuron and pancreas homeobox 1 (MNX1) indicated that differentiation was more guided toward a cholinergic sensory neuronal lineage. Furthermore, the Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 significantly impaired hDPSC neuronal differentiation and was associated with reduction of the ERK1/2 phosphorylation. In conclusion, this study demonstrates that extracellular signal-regulated kinase/Mitogen-activated protein kinase (ERK/MAPK) is necessary for sensory cholinergic neuronal differentiation of hDPSCs. hDPSC-derived cholinergic sensory neuronal-like cells represent a novel model and potential source for neuronal regeneration therapies.


Assuntos
Acetilcolinesterase , Neuroblastoma , Humanos , Acetilcolinesterase/metabolismo , Polpa Dentária/metabolismo , Neuroblastoma/metabolismo , Diferenciação Celular , Tretinoína/farmacologia , Células-Tronco , Colinérgicos , Células Cultivadas , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
17.
PLoS One ; 17(10): e0275751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36201719

RESUMO

In small and large spinal dorsal root ganglion neurons, subtypes of voltage-gated sodium channels, such as NaV1.7, NaV1.8, and NaV1.9 are expressed with characteristically localized and may play different roles in pain transmission and intractable pain development. Selective stimulation of each specific subtype in vivo may elucidate its role of each subtype in pain. So far, this has been difficult with current technology. However, Optogenetics, a recently developed technique, has enabled selective activation or inhibition of specific neural circulation in vivo. Moreover, optogenetics had even been used to selectively excite NaV1.8-expressing dorsal root ganglion neurons to induce nocifensive behavior. In recent years, genetic modification technologies such as CRISPR/Cas9 have advanced, and various knock-in mice can be easily generated using such technology. We aimed to investigate the effects of selective optogenetic activation of NaV1.7-expressing afferents on mouse behavior. We used CRISPR/Cas9-mediated homologous recombination to generate bicistronic NaV1.7-iCre knock-in mice, which express iCre recombinase under the endogenous NaV1.7 gene promoter without disrupting NaV1.7. The Cre-driver mice were crossed with channelrhodopsin-2 (ChR2) Cre-reporter Ai32 mice to obtain NaV1.7iCre/+;Ai32/+, NaV1.7iCre/iCre;Ai32/+, NaV1.7iCre/+;Ai32/Ai32, and NaV1.7iCre/iCre;Ai32/Ai32 mice. Compared with wild-type mice behavior, no differences were observed in the behaviors associated with mechanical and thermal stimuli exhibited by mice of the aforementioned genotypes, indicating that the endogenous NaV1.7 gene was not affected by the targeted insertion of iCre. Blue light irradiation to the hind paw induced paw withdrawal by mice of all genotypes in a light power-dependent manner. The threshold and incidence of paw withdrawal and aversive behavior in a blue-lit room were dependent on ChR2 expression level; the strongest response was observed in NaV1.7iCre/iCre;Ai32/Ai32 mice. Thus, we developed a non-invasive pain model in which peripheral nociceptors were optically activated in free-moving transgenic NaV1.7-ChR2 mice.


Assuntos
Gânglios Espinais , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Optogenética , Animais , Channelrhodopsins/metabolismo , Gânglios Espinais/metabolismo , Camundongos , Camundongos Transgênicos , Dor/genética , Recombinases/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(33): e2209164119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35878056

RESUMO

Voltage-gated sodium (Nav) channel Nav1.7 has been targeted for the development of nonaddictive pain killers. Structures of Nav1.7 in distinct functional states will offer an advanced mechanistic understanding and aid drug discovery. Here we report the cryoelectron microscopy analysis of a human Nav1.7 variant that, with 11 rationally introduced point mutations, has a markedly right-shifted activation voltage curve with V1/2 reaching 69 mV. The voltage-sensing domain in the first repeat (VSDI) in a 2.7-Å resolution structure displays a completely down (deactivated) conformation. Compared to the structure of WT Nav1.7, three gating charge (GC) residues in VSDI are transferred to the cytosolic side through a combination of helix unwinding and spiral sliding of S4I and ∼20° domain rotation. A conserved WNФФD motif on the cytoplasmic end of S3I stabilizes the down conformation of VSDI. One GC residue is transferred in VSDII mainly through helix sliding. Accompanying GC transfer in VSDI and VSDII, rearrangement and contraction of the intracellular gate is achieved through concerted movements of adjacent segments, including S4-5I, S4-5II, S5II, and all S6 segments. Our studies provide important insight into the electromechanical coupling mechanism of the single-chain voltage-gated ion channels and afford molecular interpretations for a number of pain-associated mutations whose pathogenic mechanism cannot be revealed from previously reported Nav structures.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Dor , Motivos de Aminoácidos , Microscopia Crioeletrônica , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/genética , Domínios Proteicos , Rotação
19.
Bioorg Med Chem Lett ; 73: 128892, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850422

RESUMO

NaV1.7 is an actively pursued, genetically validated, target for pain. Recently reported quinolinone sulfonamide inhibitors displayed promising selectivity profiles as well as efficacy in preclinical pain models; however, concerns about off-target liabilities associated with this series resulted in an effort to reduce the lipophilicity of these compounds. Successful prosecution of this strategy was challenging due to the opposing requirement for lipophilic inhibitors for NaV1.7 potency and in vivo clearance (CL). Deconstruction of the heterocyclic core of the quinolinone series and utilization of an intramolecular hydrogen bond to mimic the requisite pharmacophore enabled the introduction of polarity without adversely impacting CL. Ultimately, this strategy led to the identification of compound 29, which demonstrated favorable ADME and was efficacious in pre-clinical models of pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Quinolonas , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/tratamento farmacológico , Relação Estrutura-Atividade , Sulfanilamida , Sulfonamidas/química , Sulfonamidas/farmacologia , Ureia/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química
20.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35743236

RESUMO

Chronic pain is a widespread disorder affecting millions of people and is insufficiently addressed by current classes of analgesics due to significant long-term or high dosage side effects. A promising approach that was recently proposed involves the systemic inhibition of the voltage-gated sodium channel Nav1.7, capable of cancelling pain perception completely. Notwithstanding numerous attempts, currently no drugs have been approved for the inhibition of Nav1.7. The task is complicated by the difficulty of creating a selective drug for Nav1.7, and avoiding binding to the many human paralogs performing fundamental physiological functions. In our work, we obtained a promising set of ligands with up to 5-40-fold selectivity and reaching 5.2 nanomolar binding affinity by employing a proper treatment of the problem and an innovative differential in silico screening procedure to discriminate for affinity and selectivity against the Nav paralogs. The absorption, distribution, metabolism, and excretion (ADME) properties of our top-scoring ligands were also evaluated, with good to excellent results. Additionally, our study revealed that the top-scoring ligand is a stereoisomer of an already-approved drug. These facts could reduce the time required to bring a new effective and selective Nav1.7 inhibitor to the market.


Assuntos
Dor Crônica , Canal de Sódio Disparado por Voltagem NAV1.7 , Analgésicos/efeitos adversos , Dor Crônica/tratamento farmacológico , Descoberta de Drogas , Humanos , Ligantes , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...